AMONIUM NITRAT : PENJELASAN, PEMBUATAN, REAKSI DAN DAMPAK


Amonium nitrat merupakan senyawa kimia berupa garam nitrat dari kation monium. Senyawa ini dirumuskan NH4NO3disederhanakan menjadi N2H4O3. Senyawa ini terbentuk dari padatan kristal putih dan sangat larut dalam air. Senyawa ini sering digunakan dalam pertanian sebagai pupuk kaya-nitrogen. Penggunaan utama lainnya adalah sebagai bahan baku peledak yang digunakan dalam konstruksi pertambangan, penggalian, dan konstruksi sipil. Senyawa ini adalah penyusun utama ANFO, sebuah industri peledak populer yang menyumbang 80% bahan peledak yang digunakan di Amerika Utara. Banyak negara menghapusnya dalam aplikasi konsumen karena kekhawatiran akan potensi penyalahgunaannya.

Amonium nitrat ditemukan sebagai mineral alami (amonia nitre-analog amonium garam dan mineral nitre lainnya seperti natrium nitrat) di daerah paling kering di Gurun Atacama di Chile, sering Sebagai kerak di tanah dan atau bersamaan dengan nitrat lainnya, klorat, iodat, dan mineral halida. Amonium nitrat ditambang di sana di masa lalu, namun hampir 100% bahan kimia yang saat ini digunakan adalah sintetik.

Pembuatan
Produksi industri amonium nitrat mengandung asam basa amonia dengan asam nitrat:

HNO3 + NH3 → NH4NO3

Amonia digunakan dalam bentuk anhidratnya (yaitu bentuk gas) dan asam nitrat terkonsentrasi. Reaksi ini berlangsung keras karena sifatnya yang sangat eksotermik. Setelah larutan terbentuk, biasanya pada konsentrasi sekitar 83%, kelebihan air diuapkan menjadi kandungan amonium nitrat (AN) sebesar 95% sampai konsentrasi 99,9% (AN meleleh), tergantung pada kadarnya. Lelehan AN kemudian dibuat menjadi "prills" atau manik-manik kecil dalam menara semprot, atau menjadi butiran dengan menyemprotkannya dan berjatuhan di drum yang berputar. Potongan atau butiran tersebut dapat dikeringkan lebih lanjut, didinginkan, lalu dilapisi untuk mencegah pengeringan. Potongan atau butiran ini adalah produk AN yang khas dalam perdagangan.

Amonia yang dibutuhkan untuk proses ini diperoleh dengan proses Haber dari nitrogen dan hidrogen. Amonia yang dihasilkan oleh proses Haber dioksidasi menjadi asam nitrat oleh proses Ostwald. Metode produksi lain adalah varian dari proses Odda:

Ca(NO3)2 + 2 NH3 + CO2 + H2O → 2 NH4NO3 + CaCO3

Produknya, kalsium karbonat dan amonium nitrat, dapat secara terpisah dimurnikan atau dijuan tergabung sebagai kalsium amonium nitrat.

Amonium nitrat dapat pula dibuat melalui reaksi metatesis:

(NH4)2SO4 + Ba(NO3)2 → 2 NH4NO3 + BaSO4
NH4Cl + AgNO3 → NH4NO3 + AgCl


Reaksi
Amonium nitrat bereaksi dengan logam hidroksida, melepaskan amonia dan membentuk alkali logam nitrat:

NH4NO3 + MOH → NH3 + H2O + MNO3 (M = Na, K)

Amonium nitrat tidak meninggalkan residu ketika dipanaskan:

NH4NO3 → N2O + 2H2O

Amonium nitrat juga terbentuk dalam atmosfer Bumi dari emisi NO, SO2, dan NH3dan merupakan komponen sekunder dari PM10.


Dampak Bencana

Amonium nitrat terurai menjadi gas dinitrogen oksida dan uap air bila dipanaskan (bukan reaksi eksplosif); namun, dapat diinduksi untuk meluruh secara eksplosif oleh ledakan. Stok bahan yang besar bisa menjadi risiko kebakaran utama karena oksidasi pendukungnya, dan mungkin juga meledak, seperti yang terjadi pada bencana di Texas City pada tahun 1947, yang menyebabkan perubahan besar dalam peraturan untuk penyimpanan dan penanganannya.

Dua kelas utama insiden yang mengakibatkan ledakan adalah:
  1. Ledakan terjadi oleh mekanisme transisi shock-to-detonation. Inisiasi terjadi dengan muatan peledak yang meledak dalam massa, dengan peledakan tempurung yang dilemparkan ke dalam massa, atau dengan meledakkan campuran peledak yang kontak dengan massa tersebut. Contohnya adalah Kriewald, Morgan (saat ini Sayreville, New Jersey), Oppau, dan Tessenderlo.
  2. Ledakan yang berasal dari api yang menyebar ke amonium nitrat itu sendiri (Texas City, Brest, Oakdale PA), atau dari campuran amonium nitrat dengan bahan yang mudah terbakar selama kebakaran (Repauno, Cherokee, Nadadores). Api harus dibatasi setidaknya sampai tingkat tertentu untuk transisi yang berhasil dari api ke sebuah ledakan (sebuah fenomena yang dikenal sebagai "transisi deflagration-to-detonation"). AN murni, yang kompak bersifat stabil dan sangat sulit untuk menyala, dan banyak kasus hadir bahkan bila AN yang tidak murni tidak meledak dalam api.


Sumber : WIKIPEDIA

Posting Komentar

0 Komentar